مطالعه پارامترهای موثر بر همجوشی پلاسمای دوتریوم-هلیوم 3 به روش محصورسازی مغناطیسی
استاد راهنما:
دکتر سید محمد متولی
استاد مشاور:
دکتر جعفر صادقی
بهمن1393
(در فایل دانلودی نام نویسنده موجود است)
تکه هایی از متن پایان نامه به عنوان نمونه :
(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
چکیده
هدف از تحقیقات همجوشی، تولید نیروگاه هستهای که از لحاظ اقتصادی و محیطی مناسب باشد. مسئله تولید انرژی همجوشی، دستگاهی است که بتواند سوخت را تا دمای کافی گرم کرده و سپس آن را برای مدت زمان طولانی نگه دارد، به طوری که بتواند انرژی بیشتری از طریق واکنشهای همجوشی برای گرم کردن سوخت تولید کند. اما یکی از مسائل مهم فراروی راکتورهای همجوشی آینده، وجود ناپایداری گرمایی ذاتی در راکتورهای گرما هستهای مانند توکامک میباشد
فراوانی سوختهای مورد نیاز در همجوشی هستهای یکی از بزرگترین مزایای این روش تولید انرژی، نسبت به شکافت هستهای میباشد. در این کار تحقیقانی، همجوشی مغناطیسی پلاسمای D-3He را در راکتور توکامک ITER- 90HP مورد بررسی قرار داده و با حل معادلات توازن انرژی حاکم بر همجوشی هستهای به روش خطی، تغییرات برخی از پارامتر های حاکم بر پلاسما را در دو حالت بدون ناخالصی و در حضور ناخالصی بدست میآوریم. با توجه به اهمیت کنترل ناپایداریهای ذاتی ایجاد شده در فرایند تولید انرژی هستهای در راکتورهای همجوشی، از روش کنترل تزریق میزان سوخت، با اختلال در دمای اولیه، استفاده کرده و پلاسمارا به پایداری میرسانیم و با حل دوبارهی معادلات توازن انرژی، تغییرات زمانی برخی از پارامترهای پلاسما را مورد بررسی قرار میدهیم.
**فهرست مطالب**
عنوان صفحه
مقدمه. 1
فصل اول-همجوشی هستهای.. 3
1-1- واکنشهای هستهای 3
1-2- شکافت هستهای.. 3
1-3- همجوشی هستهای.. 4
1-4- انتخاب سوخت مناسب… 6
1-5- یدههای راکتور همجوشی.. 10
1-5-1- همجوشی هستهای کنترل شده توسط لختی(ICF). 11
1-5-2- همجوشی هستهای توسط کاتالیزور میون(µCF) 13
1-5-3- محصورسازی مغناطیسی (MCF) 14
1-6- طبقه بندی انواع راکتور ها برحسب روش محصور کردن پلاسما 16
1-6-1- راکتور توکامک….. 17
1-6-2- قسمتهای اصلی راکتور توکاماک ITER.. 18
1-6-3- راکتور اسفرومک….. 20
1-6-4- سایر راکتورهای محصورسازی مغناطیسی.. 20
فصل دوم: سینیتیک همجوشی پلاسمای دوتریوم–هلیوم 3. 22
1-2- سوختهای جدید و خواص آنها 22
2-2- خواص دوتریوم. 24
2-3- خواص هلیوم 3. .. 25
2-4- پلاسما حالت چهارم ماده. 29
2-5- روش های تولید پلاسما 30
2-6- پارامترهای بنیادی پلاسما 31
2-6-1- فرکانسها در پلاسما 31
2-6-2- سرعتها در پلاسما 32
2-7- گرم کردن پلاسما 33
2-7-1- گرمایش مقاومتی.. 33
2-7-2- گرمایش از طریق فشرده سازی.. 35
2-7-3- گرمایش توسط تاثیر میدانهای الکترومغناطیسی.. 35
2-7-4- گرمایش توسط تزریق پرتو خنثی.. 36
2-8- گرمای همجوشی ذرات باردار. 36
2-9- روش های بررسی پلاسما 37
2-10- فشار جنبشی و مغناطیسی پلاسما 38
2-11- دیواره سیستم راکتورهای همجوشی D-3He از طریق محصورسازی مغناطیسی.. 39
2-12- بارگذاری دیواره راکتور. 42
2-13- اساس روش محصورسازی.. 42
2-14- اتلاف انرژی پلاسما 46
2-14-1-تابش ترمزی 46
2-14-2- تابش سیکلوترونی.. 47
2-14-3- افتهای انتقالی.. 48
2-15- فیزیک واکنشهای همجوشی.. 48
2-16- آهنگ انجام واکنش…. 49
2-17- واکنش پذیری.. 50
2-17-1- واکنش پذیری واکنشهای هستهای (پارامتر سیگما-وی). 50
2-17-2- واکنشپذیری باکی.. 51
2-17-3- واکنشپذیری با معادله بوش-هال.. 51
2-17-4- واکنشپذیری با معادله ماکسول.. 52
2-18- فاکتور Q، زمان محصورسازی انرژی، توازن توان.. 54
2-18-1- فاکتور Q… 54
2-18-2- زمان حبس انرژی.. 55
2-18-3- توازن توان… 55
2-19- معیار لاوسون و زمان حبس انرژی.. 56
2-20- معادلات اساسی دوتریوم و هلیوم 3.. 60
2-21- موازنه انرژی… 60
2-22- سوختن پلاسمای دوتریوم و هلیوم 3.. 61
فصل سوم:کنترل ناپایداری گرمایی در سوخت پلاسمای D-3He. 66
3-1- مشکل اساسی راکتورهای همجوشی.. 66
3-2- کنترل مغناطیسی.. 67
3-3- کنترل جنبشی…….68
3-4- کنترل مگنتو هیدرودینامیکی(MHD). 69
3-5- روش های استفاده از کنترل جنبشی.. 70
3-6- اهداف کنترل.. 74
3-7- طراحی کنترلر. 76
3-8- نتایج شبیه سازی.. 78
3-9-کنترل خطی با بهره گرفتن از روش تعدیل تزریق سوخت… 80
فصل چهارم: پارامترهای موثر بر همجوشی پلاسمای D-3He در سیستم توکامک….. 82
4-1- مقدمه 82
4-2- نتایج برای حالت ناپایدار. 83
4-3- پایداری پلاسمای دوتریوم و هلیوم 3 با بهره گرفتن از روش کنترلی تعدیل میزان تزریق.. 94
فصل پنجم: نتیجه گیری وبحث… 101
فهرست جداول
جدول1-1- برخی از واکنشهای همجوشی………………………………………………………………………………………………………………… 7
جدول1-2- انواع راکتورها برحسب روش محصور کردن پلاسما………………………………………………………………………………… 17
جدول2-1- نسلهای مختلف سوختهای همجوشی ………………………………………………………………………………………………… 27
جدول 2-2- مقادیر عددی پارامترهای معادله باکی……………………………………………………………………………………………………. 51
جدول2-3- مقادیر ثوابت برای واکنشهای همجوشی مختلف در معادلات بوش-هال……………………………………………………. 52
جدول2-4- مقادیر عددی C1 و C2 و C3 برای واکنشهای D-T, D-D و D-3He………………………………………………. 54
جدول 3-1- پارامترهای ITER90-HP ……………………………………………………………………………………………………………….. 73
جدول 3-2- شرایط اولیه ی پلاسما ………………………………………………………………………………………………………………………… 74
جدول 3-3- نقطه تعادل–نقطه احتراق ……………………………………………………………………………………………………………………… 79
جدول 3-4- پارامترهای کمیت کنترل …………………………………………………………………………………………………………………….. 81
فهرست اشكال
شکل 1-1- مراحل زنجیرهی پروتون – پروتون که در خورشید اتفاق میافتد.. 6
شکل 1-2- انرژی پتانسیل بر حسب فاصلهی دو هستهی باردار که با انرژی مرکز جرم به هم نزدیک میشوند. 10
شکل 1-3- نمایی از کپسول هدف 12
شکل 1-4- مراحل همجوشی به روش محصورسازی لختی.. 13
شکل1-5- راکتور آینه ای.. 16
شکل 1-6- نمایی از دستگاه چنبرهای پلاسما 17
شکل 1-7- راکتور توکاماک ایتر. 19
شکل 1-8- سطح مقطع ایتر با پلاسمای بیضی.. 19
شکل1-9- شماتیک هندسی راکتور استلاتور. 21
شکل2-1- واکنش پذیری انواع سوختها 26
شکل2-2- روشهای گرم کردن پلاسما 36
شکل2‑3: مدارهای لارمور در یک میدان مغناطیسی 44
شکل 2-4: نمایش میدان مغناطیسی توروئیدی و پولوئیدی و تبدیل چرخشی.. 44
شکل 2-5: سوقگیری ذره، در میدانهای الکتریکی و مغناطیسی متعامد 45
شکل 2-6: حرکت مارپیچی الکترونها و یونها در امتداد خطوط مغناطیسی.. 46
شکل2-7- آهنگ واکنش به صورت تابعی از دما برای واکنشهای مختلف همجوشی با توزیع سرعت ماکسولی.. 50
شکل2-8- معیار لاوسون nτE برحسب دما T(keV) برای پلاسمای D-3He و D-T با فرض محصورسازی کامل ذرات باردار محصولات عمل 59
شکل4-1- مقایسه تغییرات پارامتر واکنشپذیری برای واکنش همجوشی D-T و D-3He براساس روش باکی.. 83
شکل 4-2- چگالی پلاسمای دوتریوم و هلیوم3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی 86
شکل 4-3- دمای پلاسمای دوتریوم و هلیوم3 در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی 88
شکل 4-4- نسبت چگالی ذرهی آلفا به چگالی الکترون در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی 89
شکل 4-5- پارامتر β پلاسمای دوتریوم و هلیوم 3 برحسب زمان در حالت ناپایدار برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی 90
شکل 4-6- توان تابشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی 91
شکل 4-7- توان ذره آلفا در همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایداربر حسب
زمان بدون ناخالصی و با ناخالصی.. 92
شکل 4-8- توان اهمی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی 93
شکل 4-9- توان خالص همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو حالت بدون ناخالصی و با حضور ناخالصی 94
شکل4-10- چگالی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی 95
شکل 4-11- دمای پلاسمای دوتریوم و هلیوم3 در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی 95
شکل 4-12- نسبت چگالی ذرهی آلفا به چگالی الکترون در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی 96
شکل 4-13-پارامتر پلاسمای دوتریوم و هلیوم 3 در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی 97
شکل 4-14- توان تابشی پلاسمای دوتریوم و هلیوم 3 در حالت پایدار برحسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی 97
شکل 4-15- توان ذره آلفا در همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت پایداربر حسب زمان بدون ناخالصی و با ناخالصی.. 98
شکل 4-16- توان اهمی پلاسمای دوتریوم هلیوم 3 در حالت پایدار برحسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی 99
شکل 4-17- توان خالص همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو حالت بدون ناخالصی و با حضور ناخالصی 99
مقدمه
یکی از مهمترین اهداف بشر در جهتگیری زمینه های تحقیقاتی و پژوهشی، دستیابی به منابع جدید انرژی میباشد. در این راستا بشر تلاش کرده است تا با ساخت رآكتورهای هستهای، به منبعی از انرژی دست یابد كه بتواند مدت زمان بیشتری از آن، نسبت به سوختهای فسیلی استفاده كند. بطور کلی دو شیوه بنیادی، برای آزادسازی انرژی از یک اتم وجود دارد: شکافت هستهای[1] و همجوشی هستهای[2].
مزیت همجوشی هستهای نسبت به شکافت هستهای، فراوانی بسیار زیاد منابع سوختی آن (سوخت اصلی راکتورهای همجوشی دوتریوم میباشد که در آب دریاها به وفور وجود دارد. تولید انرژی بالاتر نسبت به روش شکافت هستهای به ازای هر نوکلئون از ماده سوخت (به عنوان مثالی از انرژی تولیدی در یک راکتور همجوشی میتوان گفت اگر یک گالن از آب دریا را که دارای مقدار کافی دوترون است در واکنش همجوشی استفاده کنیم معادل ۳۰۰ گالن گازوئیل، انرژی بدون آلودگی تولید میکند) [1]، عدم وجود معضل پسماندهای هستهای با طول عمر طولانی در روش همجوشی و در نهایت ایمنتر بودن راکتورهای همجوشی در هنگام وقوع حوادث احتمالی است که سبب برتری آن بر شکافت هستهای گردیده است. سوختهای متنوعی در فرایند همجوشی هستهای قابل بکارگیری میباشد. از آن جمله دوتریوم-تریتیوم(D-T) ، دوتریوم-هلیوم 3 (D-3He)، دوتریوم-دوتریوم (D-D) و تریتیوم-تریتیوم (T-T) میباشد. بیشتر تحقیقات انجام شده در فرایندهای همجوشی بر روی سوخت D-T انجام شده است و علت عمده آن نیز بالا بودن سطح مقطع واکنش پذیری این سوخت نسبت به سایر سوختها در بازهی دمایی عملکردی راکتورها میباشد. این سوخت در کنار مزیت ذکر شده و سایر مزیت ها محدودیتهایی نیز دارد، نظیر پرتوزایی زیاد و گران بودن سوخت تریتیوم که جزو مواد اولیه این واکنشها است. از طرفی دیگر واکنش همجوشی D-3He از میان سایر سوختها، به دلیل بازدهی بالاتر، تبدیل مستقیم انرژی و کاهش خطرات ناشی از تابش، هزینه تعمیر و نگهداری پایینتر و… مورد توجه قرار گرفت[2-4]. که این فرایند در راکتورهای متفاوت با شرایط مختلفی قابل انجام است.
لذا با این مقدمه از فرایند همجوشی هستهای، در فصل اول به بیان روشهای مختلف همجوشی هستهای و سوختهای قابل استفاده میپردازیم. در فصل دوم سینتیک فرایند همجوشی دوتریوم و هلیوم 3 و پارامترهای موثر بر همجوشی تشریح شده و به بررسی پارامترهای موثر بر همجوشی پلاسمای دوتریوم و هلیوم 3 به روش محصورسازی مغناطیسی پرداخته و فرایند با پارامتر مورد نظر شبیه سازی میگردد. در فصل چهار برخی از روش های کنترل ناپایداری در راکتور بیان شده و در ادامه نتایج حاصل از شبیه سازی به کمک پارامترهای ترمودینامیکی مربوط به سوخت دوتریوم و هلیوم 3 با نتایج بدست آمده در سایر مطالعات مقایسه میشود.
فصل اول
همجوشی هستهای
فصل اول-همجوشی هستهای
1-1-واکنشهای هستهای [3]
تبدیلات خودبخودی یا مصنوعی بعضی از هستهها به هسته دیگر که سبب تغییر ساختار هسته یا تغییر تعداد نوکلئونها (ذرات هستهای) میگردد، واکنشهای هستهای نام دارند. همجوشی هستهای و شکافت هستهای، دو روش اصلی انجام واکنشهای هستهای میباشد.
1-2-شکافت هستهای[4]
در واكنش شكافت، هستهی سنگین یک عنصر رادیو اکتیو مانند اورانیوم یا پلوتونیوم به دو یا چند هسته با جرم متوسط تجزیه میشود. به طور مثال اورانیوم 235 مورد اصابت یك نوترون قرار میگیرد و هسته فوقالعاده ناپایداری تشكیل میشود كه تقریبا بلافاصله میشكافد و كریپتون و باریم و مقدار زیادی انرژی تولید میشود. که ناشی از تبدیل جرم ناپدید شده (با مقایسه میان جرم سوختهای اولیه و محصولات واکنش) به انرژی است. این انرژی حدود 5 دهه است كه مورد استفاده قرار گرفته است اینك این نیرو همان اندازه از برق جهان را تامین میكند كه 40 سال پیش بوسیله تمام منابع انرژی تأمین میشد شكافت هستهای مزایای بسیاری نسبت به سوختهای فسیلی دارد اما مسئلهی پسماندهای آن كه حاوی مواد پرتوزا با طول عمر طولانی هستند از جمله مهمترین مسائل خاص در مورد استفاده از شكافت هستهای میباشد. از سوی دیگر ذخایر اورانیوم جهان برای استفاده در راكتورهای شكافت تنها در یك سده كفایت میكنند.
موادی که انجام یک واکنش شکافت هستهای را ممکن میسازند عبارتند از: 239Pu ، 235U ، 238U ، و ایزوتوپ 233U ، 235U بطور مصنوعی در راکتورهای هستهای با تاباندن نوترون به 233Th بوجود میآید.
در اثر برخورد نوترون حرارتی به ایزوتوپ235U ، هسته اتم به 235U تحریک شده تبدیل میشود. اورانیوم تحریک شده بعد از شکافت، به باریم و کریپتون و سه نوترون تبدیل میگردد [5].
1n + 235U → 236U → 144Ba+89Kr + 3 1n
اما مسئله مهمتر اینکه هر نوترون آزاد شده بر اثر شکافتن هسته 235U میتواند دو هسته دیگر را شکافته و چهار نوترون را بوجود آورد. شکافت هستهای و آزاد شدن نوترونها بصورت زنجیروار به سرعت تکثیر و توسعه مییابد. در هر دوره تعداد نوترونها دو برابر میشود. در واکنشهای کنترل شده تعداد شکافت در واحد زمان و نیز مقدار انرژی به تدریج افزایش یافته و پس از رسیدن به مقداری دلخواه ثابت نگهداشته میشود. برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع، لازم است که موادی قابل دسترس باشند که بتوانند نوترونهای اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست. زمانی که هسته اتمی 235U به