دانلود پایان نامه ارشد : مدولهای دوم روی حلقههای ناجابجایی | ... | |
(در فایل دانلودی نام نویسنده موجود است) تکه هایی از متن پایان نامه به عنوان نمونه : (ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است) چکیده هدف از این پایاننامه، بررسی مقاله “مدولهای دوم روی حلقههای ناجابجایی” از سکن و آلکان و اسمیت است. فرض کنید یک حلقه دلخواه باشد. یک - مدول راست یکانی غیر صفر یک مدول دوم خوانده می شود اگر و هر تصویر همریخت غیر صفر آن دارای پوچ ساز یکسان در باشند. ثابت شده که اگر یک حلقه باشد به طوری که برای هر ایدهآل اول از ، یک حلقه کراندار چپ و گولدی چپ باشد، آنگاه یک – مدول راست یک مدول دوم است اگر و تنها اگر یک ایدهآل اول حلقه باشد و یک – مدول راست بخشپذیر باشد. اگر یک حلقه در شرط زنجیر افزایشی روی ایدهآلهای دوطرفه صدق کند، آنگاه هر – مدول غیر صفر، یک تصویر همریخت غیر صفر دارد که مدول دوم است.هر مدول آرتینی غیر صفر، شامل زیرمدولهای دوم است و فقط تعداد متناهی عضو ماکسیمال در گردایه زیرمدولهای دوم آن وجود دارد. فرض میکنیم یک حلقه و یک – مدول راست غیر صفر باشد به طوریکه شامل یک زیرمدول محض است که یک مدول دوم باشد و همچنین دارای بعد دوگان گولدی باشد، برای بعضی اعداد صحیح مثبت مانند ، آنگاه یک عدد صحیح مثبت و ایدهآلهای اول وجود دارد به طوری که اگر یک زیرمدول محض از باشد که یک مدول دوم باشد، آنگاه دارای پوچساز برای بعضی است. هر زیرمدول دوم از یک مدول آرتینی حاصلجمع تعداد متناهی از زیرمدولهای دوم پوک است.
کلمات کلیدی: ایدهآلهای اول چسبیده، بعد پوک، مدول دوم، حلقه نیمموضعی.
فهرست مطالب
عنوان صفحه
فصل 1: مقدمه …………………………………………………………………………………………….. 2
فصل 2: تعاریف و قضایای پیشنیاز …………………………………………………………………. 4
فصل 3: مدولهای نیمساده و مدولهای دوم ……………………………………………………. 19
فصل 4: مدولهای دوم و حلقه گولدی …………………………………………………………….. 23
فصل 5: تصویر همریختیها …………………………………………………………………………… 33
فصل 6: زیرمدولهای دوم……………………………………………………………………………… 39
فصل 7: نتایج بیشتر …………………………………………………………………………………….. 43
منابع و مآخذ………………………………………………………………………………………………… 51 مقدمه
در سراسر این پایاننامه، تمامی حلقه ها شرکتپذیر هستند و عنصر همانی دارند و تمامی مدولها یکانی راست هستند، مگر اینکه غیر از آن بیان شود. یک – مدول راست اول نامیده می شود هرگاه ، و برای هر زیرمدول غیر صفر از . منظور از زیرمدول اول از – مدول راست ، زیرمدولی مانند است به طوری که اول باشد. مدولهای اول و زیرمدولهای اول مدولها در سی سال اخیر به طور فراوان مورد مطالعه قرار گرفتهاند. مطالعه مدولهای دوم و زیرمدولهای دوم مدولها موضوع جدیدتری است. حال به مفهوم دوگان مدول اول، یعنی مدول دوم میپردازیم. یک – مدول راست ، دوم نامیده می شود هرگاه و برای هر زیرمدول محض از . توجه شود که در بعضی موارد، مدول دوم را هماول نیز مینامند. همچنین دوگان زیرمدول اول، یعنی زیرمدول دوم را تعریف میکنیم. منظور از زیرمدول دوم یک مدول، زیرمدولی است که خود، مدول دوم باشد. مدولهای دوم و زیرمدولهای دوم، اولین بار توسط دکتر یاسمی روی حلقههای جابجایی در منبع در سال 2001 معرفی شده است. فرض کنید یک حلقه جابجایی و یک مدول غیر صفر باشد. برای هر عنصر از حلقه فرض کنیم یک درونریختی مدول باشد که به صورت تعریف میشود. به سادگی میتوان دید که اول است اگر و تنها اگر به ازای هر داشته باشیم یا اینکه یک تکریختی باشد. به عبارت دیگر ، اول است اگر و تنها اگر برای هر در حلقه و به ازای هر عضو ، اگر داشته باشیم آنگاه یا . همچنین به سادگی میتوان مشاهده کرد – مدول دوم است اگر و تنها اگر برای هر داشته باشیم یا یک بروریختی باشد. به بیان دیگر، دوم است اگر و تنها اگر برای هر عضو ، یا .
هدف از این پایاننامه، مطالعه مدولهای دوم در سایه مدولهای اول است. توجه داشته باشید اگر یک حلقه و یک – مدول راست دوم باشد، آنگاه یک ایدهآل اول است. در این حالت برای راحتی کار را یک مدول – دوم می خوانیم. توجه داشته باشید که مدولهای ساده، اول و دوم هستند. در حالت کلی تر، ما مدول را نیم ساده همگن می نامیم، در صورتی که برابر حاصلجمع مستقیم زیرمدولهای ساده یکریخت باشد. به سادگی میتوان دید که مدولهای نیم ساده همگن، اول و دوم هستند. علاوه بر آن، اگر یک حلقه ساده باشد آنگاه هر مدول غیر صفر روی اول و دوم است. بالعکس، هر حلقه که خودش – مدول راست دوم باشد، ساده است. به وضوح، هر زیرمدول غیر صفر از یک مدول اول، اول است. همچنین هر تصویر همریخت غیر صفر از یک مدول دوم، دوم است. در این پایاننامه مثال های بیشتری آورده شده است.
[یکشنبه 1398-07-14] [ 01:14:00 ق.ظ ]
لینک ثابت
|