(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
چکیده
در این پژوهش، استفاده از ضایعات چای به عنوان جاذب ارزان قیمت و فراوان، جهت استخراج منگنز از نمونههای غذایی مورد بررسی قرار گرفته است. با استفاده از اسید استیک 5 مولار منگنز از نمونههای غذایی استخراج و با اضافه کردن مقدار کمی از ضایعات چای به عنوان جاذب، منگنز آن استخراج شد. سپس با اسید نیتریک به عنوان حلال شوینده واجذب منگنز صورت گرفت. از طیف سنجی جذب اتمی شعله(FAAS) جهت تعیین مقدار یون منگنز استفاده شد. شبکه مصنوعی عصبی (ANN) جهت مدل سازی و بهینه سازی فرآیند استخراج مورد استفاده قرار گرفت. عوامل مؤثر بر استخراج از قبیل pH، مقدار جاذب، زمان استخراج و غلظت شوینده برای شویش منگنز از جاذب، پارامترهای ورودی بوده و پس از آموزش پس انتشار خطا (BP)، مدل ANN قادر به پیش بینی راندمان استخراج منگنز با یک تابع انتقال تانژانت سیگموئید در لایه پنهان و تابع انتقال خطی در لایه خروجی بود. حد تشخیص برای منگنز ng.g-16/0 بدست آمد. سپس از این روش تحت شرایط بهینه، برای تعیین مقدار منگنز در نمونههای حقیقی استفاده گردید.
کلمات کلیدی: استخراج با فاز جامد، منگنز، ضایعات چای، شبکه عصبی مصنوعی و نمونههای غذایی
فهرست مطالب
فصل اول: مقدمه
1-1- مقدمه ……………………………………………………………………………………………………………….. 2
1-2- فلزات سنگین………………………………………………………………………………………………………… 2
1-3- منگنز و اهمیت اندازهگیری آن ……………………………………………………………………………………….3
1-4- روشهای استخراج…………………………………………………………………………………………………… 4
1-5- استخراج با فاز جامد………………………………………………………………………………………………….. 6
1-6- جاذب های طبیعی…………………………………………………………………………………………………… 7
1-7- ضایعات چای…………………………………………………………………………………………………………. 8
1-7-1- آماده سازی ضایعات چای بعنوان جاذب .. 9
1-8- شبکه عصبی مصنوعی( ANN)…………………………………………………………………………………….. 10
1-8-1 ساختار شبکه عصبی مصنوعی .. 11
1-8-2- تشابهات شبکه عصبی مصنوعی و بیولوژیکی .. 13
1-8-3- توابع محرک……………………………………………………………………………………………… 14
1-8-3-1 تابع محرک خطی…………………………………………………………………………………………………………………………………………………………………. 16
1-8-3-2 تابع محرک لگاریتمی زیگموئیدی………………………………………………………………… 16
1-8-4 الگوریتمهای آموزش شبکههای عصبی مصنوعی .. 19
1-8-5- یادگیری ………………………………………………………………………………………………………20
1-8-6- الگوریتم لونبرگ مارکواردت .. 21
فصل دوم: مروری بر منابع
2-1- مقدمه……………………………………………………………………………………………………………… 24
2-2- مروری بر مطالعات انجام شده در مورد روش استخراج با فاز جامد . 25
2-3- مروری بر مطالعات انجام شده در مورد جاذبهای کم هزینه . 28
2-4- مروری بر مطالعات انجام شده در مورد استفاده از ضایعات چای به عنوان جاذب………………………………….. 29
فصل سوم: مواد و روشها
3-1- مقدمه……………………………………………………………………………………………………………… 33
3-2- تجهیزات………………………………………………………………………………………………………….. 33
3-3- مواد مصرفی……………………………………………………………………………………………………….. 33
3-4- روش آماده سازی جاذب ……………………………………………………………………………………………34
3-5- فرآیند استخراج…………………………………………………………………………………………………….. 34
3-6- مدل شبکه عصبی مصنوعی …………………………………………………………………………………………35
فصل چهارم: نتایج و بحث
4-1- مقدمه………………………………………………………………………………………………………………..40
4-2- مدلسازی با شبکه عصبی مصنوعی…………………………………………………………………………………. 40
4-3- بهینه سازی استخراج فاز جامد…………………………………………………………………………………….. 41
4-4- آنالیز حساسیت ……………………………………………………………………………………………………..48
4-4- مقایسه دادههای آزمایشگاهی و شبکه عصبی………………………………………………………………….. 50
4-4-1- اثر pH بر استخراج………………………………………………………………………………………. 50
4-4-2- اثر مقدار جاذب………………………………………………………………………………………….. 51
4-4-3- اثر غلظت شوینده بر استخراج . 52
4-5- بررسی عملکرد روش…………………………………………………………………………………………… 53
4-5-1- منحنی کالیبراسیون . 54
4-5-2- حد تشخیص…………………………………………………………………………………………….. 54
4-5-3- فاکتور تغلیظ…………………………………………………………………………………………….. 55
4-6- آنالیز نمونه های واقعی…………………………………………………………………………………………. 55
4-6- نتیجه گیری…………………………………………………………………………………………………… 56
فهرست شکلها
شکل 1-1 ساختار(a) یک نورون واقعی و ساختار (b) مدل یک نورون مصنوعی……………………………………………………………………………… 12
شکل 1-2 ساختار یک شبکه عصبی مصنوعی………………………………………………………………………………………………………………………………………………….. 13
شکل 1-3 توابع محرک خطی … 16
شکل 1-5 تابع محرک لگاریتمی زیگموئیدی … 17
شکل(4-1) توزیع زیر مجموعه دادههای (a) آموزشی، (b) ارزیابی و © آزمایشی…………………………………………………………………………… 44
شکل (4-2) ساختار ANN بهینه…………………………………………………………………………………………………………………………………………………………………………. 46
شکل (4-3) میانگین مربعات خطای آموزشی، ارزیابی و آزمایشی برای الگوریتم LM……………………………………………………………………. 47
شکل 4-4- اثر pH روی میزان استخراج یون منگنز…………………………………………………………………………………………………………………………………….. 51
شکل 4-5- اثر مقدار جاذب ضایعات چای بر استخراج یون منگنز . 52
شکل 4-6- اثر غلظت اسید نیتریک به عنوان حلال شوینده بر روی استخراج یون منگنز……………………………………………………………. 52
شکل 4-7- اثر زمان بر روی استخراج یون منگنز…………………………………………………………………………………………………………………………………………… 53
فهرست جداول
جدول 1-1 انواع توابع محرک…. 15
جدول 1-2 الگوریتمهای آموزش شبکههای معمولی… 20
جدول 1-4: مقایسه الگوریتم ها با 10 نرون در لایه پنهان.. 41
جدول(4-2) دادههای آزمایشی استفاده شده برای مدل ANN…. 42
جدول (4-3) ارزیابی عملکرد اثرات متقابل متغیرهای ورودی برای الگوریتم.. 49
جدول4-4 تعیین منگنز در نمونههای غذایی (N=3) 56
1-1- مقدمه
فلزات سنگین به دو طبقه فلزات واسطه و شبه فلزات تقسیم بندی میشوند. فلزات واسطه برای عامل زیستی اعضاء در غلظتهای پائین ضروری بوده و در غلظتهای بالا سمی هستند (الصاق،1390).
اندازهگیری و تعیین دقیق یونهای فلزی در مقادیر ناچیز در نمونههای گوناگون محیطی، آبی، غذایی و بیولوژیکی بخاطر نقش مهم آنها در زندگی امروز بشر از مهمترین اهداف شیمیدانان تجزیه، به شمار میرود. جایی که مرز بین ضروری بودن میزان یونهای فلزی و میزان مضر بودن آنها بسیار محدود است، یونهای فلزات واسطه باید با دقت و نیز صحت تجزیهای مورد نیاز، به منظور جلوگیری از ایجاد خسارات زیان بار مورد ارزیابی واقع شوند (Afkhami et al., 2011). یکی از زمینههایی که امروزه بسیاری از تحقیقات، بویژه در حیطهی انواع سرطانها مورد توجه قرار گرفته است، بررسی نقش عناصر کمیاب در ایجاد و پیشرفت بیماریهای سرطانی است (مزدک و همکاران، 1387).
بر این اساس، اندازهگیری فلزات در غلظتهایی در حد میکرو و نانو (فلزات ناچیز)، در بسیاری از زمینهها از قبیل تشخیص پزشکی، سم شناسی، کنترل آلودگی محیط زیست، کنترل کیفی مواد با خلوص بالا، اکتشافات زمین شناختی و غیره بسیار حائز اهمیت میباشد (Goswami and Singh, 2002).
1-2- فلزات سنگین
در جدول تناوبی، به فلزات گروه 3 تا 16 در تناوب 4 و بعد از آن فلزات سنگین میگویند فلزات سنگین ترکیبات معدنی هستند که وزن مخصوص آنها 4 تا 5 برابر وزن مخصوص آب و نیز اوربیتال D آنها در حال پرشدن است. بسیاری از این عناصر نه تنها برای موجودات و انسان ضروری نیستند، بلکه دارای خاصیت بسیار سمی نیز هستند. ارگانیسمهای زنده به مقادیر بسیار کمی از بعضی فلزات سنگین برای رشد و بقا نیاز دارند که به اصطلاح به آنها عناصر جزئی گفته میشود. عناصر جزیی[1] به دو گروه تقسیم میشوند . گروه اول عناصری مانند کبالت، کروم، مس، آهن، منگنز، مولیبدن، سلنیوم و روی هستند که برای زندگی انسان ضروری میباشند و گروه دوم عناصری که دارای خواص سمی بالقوه برای انسان هستند مثل نقره، آلومینیم، آرسنیک، کادمیوم، جیوه، سرب و نیکل. البته وجود عناصر غیرضروری و سمی در آب در مقادیر ناچیز ، الزاماً نشاندهنده مخاطرهآمیز بودن آب نیست. همانطورکه عناصری مانند کبالت، کروم، آهن و سلنیوم که در مقادیر کم ضروری به شمار میروند، در غلظتهای بالا سمی هستند. ورود و تجمع فلزات سنگین به بدن انسان و موجودات زنده می تواند باعث اختلالات عصبی، بهم خوردن تعادل هورمونها، اختلالات تنفسی، آسیب به کبد، کلیه و مغز، آلرژی و آسم، کمخونی، اختلالات پوستی، ریزش مو، پوکی استخوان و در نهایت ایجاد سرطان شود. طبق مطالعات اپیدمیولوژیک بین ابتلا به بیماریهای قلبی، اختلالات کلیوی و انواع مختلف سرطانها با فلزات سنگین موجود در آب ارتباط وجود داشته است (میران زاده و همکاران، 1390).
1-3- منگنز و اهمیت اندازهگیری آن
منگنز پنجمین عنصر از نظر فراوانی در پوسته کره زمین است و در طبیعت به صورت یک فلز آزاد وجود ندارد بلکه در یازده حالت اکسایشی یافت میشود و نوع دو ظرفیتی آن از نظر زیستی فعال است. شرایط خاص در برخی خاکها از جمله خاکهای اسیدی و آتشفشانی منجر به احیای بیش از حد منگنز و ایجاد سمیت این عنصر میشود (حاجی بلند، 1386).
منگنز عنصری است که به راحتی در اختیار بدن قرار می گیرد و منابع عمده ی آن حبوبات، غلات کامل، آجیل، چای، شیر و محصولات لبنی و سبزیجات با برگ سبز پررنگ هستند که با توجه به در دسترس بودن آن ها به میزان فراوان، به راحتی نیازمان به آن برآورده می شود و کمتر موارد کمبود آن دیده شده است. کاربرد منگنز در بدن کنترل عملکرد مناسب آنزیمها، جذب مواد مغذی، درمان زخمها و جراحات بدن و رشد استخوانی از جمله وظایف این مادهی معدنی محسوب میشوند. به همین علت که منگنز جزو عناصر ضروری برای عملکرد بدن است. خوشبختانه کمبود این ماده معمولاً به ندرت بروز میکند. اما در بین افرادی که از مشکلات استخوانی، درد مفاصل رنج میبرند مشاهده میشود. کمبود منگنز در انسان بندرت مشاهده میشود در حالیکه مسمومیت با منگنز در افرادی که در معرض غلظتهای بالائی از این عنصر یا ترکیبات آن قرار دارند مشاهده میشود و در دوران نوزادی از اهمیت ویژهای برخوردار است. تحقیقات نشان میدهد مسمومیت با منگنز تشکیل هموگلوبین را کاهش داده و باعث بروز کمخونی میشود (حسنزاده قصبه، 1381).
منگنز در بدن انسان نقش کوآنزیمی داشته و با اتصال به بعضی آنزیمها بعنوان فعالکننده در تسریع واکنشها عمل میکند. افزایش میزان منگنز، آسیبهای شدید مغزی همراه با اختلالات فیزیولوژیکی و نورولوژیکی مانند بیماری پارکینسون (سختی عضلات) را سبب میشود (الصاق،1390)
1-4- روشهای استخراج
اندازهگیری مقدار کم یونها در نمونههای مختلف محیطی و بیولوژیکی یکی از اهداف مهم دانشمندان شیمی تجزیه میباشد و پیوسته در حال انجام است اما یکی از مشکلات بسیار اساسی این است که غلظت یونهای فلزی در نمونههای مختلف بسیار کم و کمتر از حد تشخیص دستگاههایی است که در دسترس قرار دارند و یا اینکه سایر گونههای موجود در نمونه برای اندازهگیری نمونه مزاحمت ایجاد میکنند (Soylak et al., 2002) و بنابراین جهت اندازهگیری یونهای فلزی بایستی عمل استخراج و پیش تغلیظ انجام شود (Safavi et al., 2006).
حساسیت، سرعت، تکرارپذیری، سادگی و صحت روشهای تجزیهای برای تعیین عناصرجزئی در نمونههای محیطی و زمین شناسی مورد نیاز میباشد. اندازهگیری مستقیم غلظتهای فوق العاده پایین عناصر جزئی مورد نیاز با استفاده از روشهای اسپکترومتری اتمی جدید مانند اسپکترومتری جذب اتمی و اسپکترمتری نشر اتمی پلاسمای جفت شده القایی (امجدی و همکاران، 1386) به دلایلی که قبلا نیز ذکر شد از قبیل حد تشخیص دستگاه و مزاحمت بافت نمونه، اغلب مشکل است (Tuzen et al., 2005).
در گذشته استخراج با حلال متداولترین روش استخراج بود. از معایب این روش، طولانی بودن زمان استخراج و مصرف مقادیر زیادی حلال است که مستلزم مراحل اضافی و صرف هزینه و وقت برای بازیافت حلال و تغلیظ عصاره می باشد که باعث آسیب به محیط زیست می گردد. همچنین باید از حرارت استفاده گردد که منجر به تجزیه گرمایی برخی ترکیبات می گردد روشهای نوین استخراج باید غیر سمی، سریع، مکانیزه و قابل اتوماسیون، دارای حساسیت بالا، از لحاظ هزینه به صرفه و از لحاظ محیطی ایمن باشند((Mandal et al., 2007
روش های نوین استخراج ترکیبات مورد نیاز از مواد غذایی شامل استخراج با سیال فوق بحرانی، استخراج با مایع تحت فشار، استخراج با آب داغ تحت فشار، استخراج به کمک امواج مایکروویو، استخراج با حلال
به کمک غشا، استخراج با فاز جامد و استخراج با لوله متحرک با قابلیت جذب می باشد. این تکنیکها با بسیاری از نیازهای امروزی مانند ملاحظات زیست محیطی، سرعت و قابلیت اتوماسیون مطابقت دارند. استفاده از این روشها موجب کاهش زمان استخراج، کاهش مقدار حلال مصرفی ، افزایش راندمان استخراج و بهبود کیفیت ترکیبات استخراج شده می گردد.
با گسترش شیمی تجزیه، آمادهسازی نمونه به تدریج اصلیترین بخش آنالیز شده و 80درصد از زمان کل فرآیند تجزیه را در بر میگیرد. تعدد نمونههای زیستی و غذایی به موازات افزایش آلایندههای محیطی، اصلیترین دلیل گستردگی روشهای آمادهسازی نمونه است. با توسعه روشهای حساس و دقیق برای اندازهگیری نمونههای محیطی، تحقیقات بر روی روشهای سازگار با محیط زیست .با آلودگی کمتر متمرکز شده است (Chen et al., 2008).
1-5- استخراج با فاز جامد
روشهای استخراج با فاز جامد جهت جداسازی و پیش تغلیظ عناصرکمیاب از نمونههای زیست محیطی، مواد غذایی (Khajeh and Dastafkan, 2012) و نمونههای آبی (Khajeh et al., 2011) بطور گسترده استفاده میشود. در مواقعی که با بافت پیچیده نمونه و یا غلظت ناچیز آنالیت مواجهایم، این روش قادر به فراهم آوردن شرایط کاری انعطاف پذیر و در نتیجه استخراج ساده تر میباشد (Moyano et al., 1999). بخاطر مزایای متعددی، استخراج با فاز جامد جایگزین روش استخراج مایع-مایع (LLE)[2] (Pyrzynska and Trojanowicz, 1999) و سوکسله شده است (امجدی و همکاران، 1386) که این مزایا عبارتند از:
بکار بردن نمونه به صورت مستقیم، ساده و سریع در اندازه خیلی کوچک (حجم میکرولیتر) بدون کاهش نمونه
فاکتور پیش تغلیظ بالا
تکرارپذیری بالا
نیاز کم به حلالهای آلی
توانایی ترکیب با روشهای مختلف به صورت On-line و یا Off-line
صرفه جویی در هزینه و زمان
و از دیگر مزایای این روش انعطاف پذیری[3]، سهولت خودکار شدن و نبودن فرآیند مزاحم امولسیون می باشد (Pyrzynska and Trojanowicz, 1999 ; Khajeh and Sanchooli, 2011). این روش برای استخراج و تغلیظ آنالیتها از یک بافت مایع به وسیله توزیع ترکیبات بین یک فاز جامد و یک فاز مایع استفاده می کند. هدف استخراج با فاز جامد از بین بردن ترکیبات مزاحم و تغلیظ آنالیت با بازیابی خوب و نتایج تکرار پذیر میباشد (Huck and Bonn, 2000) استخراج با فاز جامد معایبی نیز دارد که از جمله می توان به تکثیر پذیری پایین روش به خاطر تفاوتهای بین مقادیر دستهای جاذب ها، مشکل بودن استاندارد سازی استفاده از سیستم ایجاد مکش و خلا و ماهیت متنوع مراحل خشک شدن اشاره نمود (Walker and Mills, 2002).
1-6- جاذب های طبیعی
جاذبهای طبیعی، شامل مواد آلی و معدنی هستند. از جاذبهای آلی، میتوان کاه، چوب ذرت، پوستهی بادام زمینی، فیبر چوب و تورب ساخته شده از خزهی پوسیده را نام برد. مواد طبیعی، نسبتاً ارزان و به فراوانی در دسترس هستند و از شدت جذب قابل قبولی برخوردارند. ارزان و در دسترس بودن، تجدیدپذیر بودن و متناسب بودن این جاذبها با محیط زیست، باعث میشود که تمایل بیشتری به سمت جاذبهای زیستی و طبیعی وجود داشته باشد.
جاذبهای طبیعی ارزان قیمت بوده و به راحتی در دسترس میباشند. برخی از انواع آنها در طبیعت به وفور یافت و در برخی از فعالیتها هم بصورت ضایعات بلا استفاده تولید میشوند. در حالی که قیمت رزینهای تبادل یونی بسیار زیاد بوده و برآوردها بیانگر این است که با استفاده از این فرآیند در مقایسه با سایر روش ها حدود 20 درصد هزینه کاهش می یابد ( (Naddafi, 2005.
با توجه به وسعت مطالعات در زمینه جذب با استفاده از جاذبهای طبیعی، در ادامه به شرح مختصری از تحقیقات عمده پرداخته شده است:
Bameri و Khajeh در سال 2013 به بررسی تاثیر خاک اره در حذف متیلن بلو از نمونههای آبی پرداختند .
Wang و Qin در سال 2005 میزان جذب مس از آبهای آلوده را با استفاده از پوسته شلتوک برنج بررسی کردند.
Grimm و همکاران در سال 2008 میزان جذب مس را با استفاده از جاذبهای خاک اره، جلبک دریایی و خزه مورد بررسی قرار دادند.
Montanher و همکاران در سال 2005 برای حذف سرب و مس از پوسته شلتوک برنج استفاده کردند.
1-7- ضایعات چای
چای یکی از قدیمیترین نوشیدنیها می باشد و پس از آب، پرمصرفترین و مهمترین نوشیدنیهای مطبوع برای رفع خستگی و تشنگی در بیشتر کشورهای جهان و از جمله ایران میباشد. بیش از 30 کشور چای خیز جهان، مبادرت به تولید چای سیاه میکنند که سهم ایران در این تولید جهانی، حدود 5/2 درصد است. بر اساس گزارش سازمان چای کشور در ایران سالانه حدود 50 تا 60 هزار تن چای سیاه تولید میشود. در عمل آوری تولید چای سیاه حدود 10 درصد ضایعات چای، موسوم به خاک چای حاصل میشود که بصورت پودر بوده و با غربال کردن چای سیاه در آخرین مرحله تولید و قبل از بسته بندی به دست می آید که در بازارهای جهانی قیمت چندانی ندارد (نجفی و همکاران، 1388).
در هند تولید سالانه چای حدود 857000 تن است که 4/27 درصد از تولید کل جهان میباشد(Wasewar et al., 2008) مقدار چای خشک تولید شده از 100 کیلوگرم برگ چای سبز، 22 کیلوگرم بطور متوسط است و حدود 18 کیلوگرم برای بازار بسته بندی میشود و 4 کیلوگرم دیگر از مواد چای خشک به هدر میرود (Cay et al., 2004). مقدار ضایعات چای تولید شده در هر سال پس از پردازش در حدود 190400 تن در هند به تنهایی است ((Wasewar, 2010. در حال حاضر سالانه حدود 4 هزار تن ضایعات چای در کارخانجات چای سازی ایران تولید شده و تقریباً بدون مصرف میباشند (نیکخواه و همکاران، 1391).
دیوارههای سلولی نامحلول برگهای چای از سلولوز[4]، همی سلولوز[5]، لیگنین[6]، تاننهای فشرده[7] و پروتئینهای ساختاری ساخته شدهاند. بعبارت دیگر یک سوم از کل ماده خشک در برگهای چای باید پتانسیل خوبی بعنوان جاذب فلزی از محلول و فاضلابهای آبی داشته باشند ((Wasewar, 2010.
1-7-1- آمادهسازی ضایعات چای بعنوان جاذب
جهت آمادهسازی ضایعات چای، بعنوان جاذب کم هزینه در استخراج فاز جامد روش خاصی در کتب و یا اسناد علمی بیان نشده است بلکه روشهایی بطور تجربی توسط پژوهشگران انجام شده و در مقالات مختلف ذکر شده است.
Mahavi و همکاران در سال 2005 از روش بسیار ساده جهت آمادهسازی جاذبها استفاده کردند. آنها ضایعات چای را در مرحله اول شسته و با آب مقطر شستشو دادند و پس از خشک کردن در 100 درجه سانتیگراد با توری سایز 10، غربال کردند.
Malkoc and Nuhoglu در سال 2005 برای حذف اجزای رنگی چای قبل از آزمایش، آنها را برای مدت زمان طولانی با آب جوش شستشو دادند تا محلول حاوی ضایعات چای بیرنگ شود. سپس ضایعات چای را تمیزکرده و در دمای اتاق با عبور گاز خشک کردند.
Amarasinghe and Williams در سال 2007 نیز با آب جوش ضایعات چای را شستشو دادند و آنقدر این کار را تکرار کردند تا اجزای محلول و رنگ آن از بین برود. سپس به مدت 12 ساعت در آون با حرارت 85 درجه سانتیگراد خشک کردند. ضایعات چای خشک، غربال شده و در کیسه از جنس پلی اتیلن نگهداری میشود. نوع مشابهی از روش آمادهسازی، توسط Cay و همکارانش طراحی شد و توسط Wasewar و همکارانش در سال 2008 استفاده شده است. قبل از آزمایش، ضایعات چای خرد شده با آب گرم (80 درجه سانتیگراد) به مدت یک ساعت شسته شده و تاننهای قابل هیدرولیز و دیگر اجزای محلول و رنگی حذف میشود. چای خشک بیرنگ و تمیز را در آون با 105 درجه سانتیگراد قرار داده تا خشک شود و در نهایت ذرات با اندازه 60-170 غربال میشود و بعنوان جاذب مورد استفاده قرار میگیرد.
موضوعات: بدون موضوع
[شنبه 1398-07-13] [ 07:16:00 ب.ظ ]