دکتر سیروس جوادپور
 

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

فصل 1- مقدمه…………………………………… 1

1-1- کلیات……………………………………. 2

1-2- اجرای پروژه………………………………….. 6

1-3- هدف از انجام تحقیق……………………………………. 7

فصل 2- مروری بر منابع…………………………………… 8

2-2- تعریف مواد کامپوزیتی……………………………………. 10

2-3- سیستم‏های کامپوزیتی تقویت‏شده با الیاف (FRC)……………….12

2-4- کامپوزیت‏های زمینه پلیمری (PMC)………………………………….. 12

2-4-1- رزین‏های مورد استفاده در کامپوزیت زمینه پلیمری……………….. 12

2-4-2- الیاف (تقویت‏کننده)………………………………….. 15

2-5- ساخت کامپوزیت‏ها………………………………….. 17

2-5-1- لایه‏ گذاری دستی……………………………………. 17

2-5-2- فرایند قالب‏گیری کیسه ‏ای……………………………………. 18

2-5-3- رشته پیچی……………………………………. 18

2-5-4- برون‏کشی……………………………………. 18

2-6- کاربردهای کامپوزیت‏های زمینه پلیمری……………………………………. 20

2-6-1- کاربرد در صنعت اتومبیل‏سازی……………………………………. 20

2-6-2- کاربردهای دریایی……………………………………. 21

2-6-3- کاربردهای هوا-فضا………………………………….. 22

2-6-4- مواد کامپوزیتی در تکنولوژی انرژی بادی………………………………. 23

2-7- خستگی……………………………………. 25

2-8- خستگی در مواد کامپوزیتی زمینه پلیمری……………………………… 27

2-8-1- آسیب خستگی……………………………………. 28

2-8-2- مدهای مختلف واماندگی خستگی در مواد کامپوزیتی……………….. 31

2-8-3- مقایسه‏ای بین شکست خستگی و استاتیکی………………………. 32

2-8-3-1- واماندگی‏های بین لایه‏ای……………………………………. 33

2-8-3-1-1- مورفولوژی‏های شکست در مد I بارگذاری سیکلی………………… 33

2-8-3-1-2- مورفولوژی‏های شکست در مد II بارگذاری سیکلی……………….. 34

2-8-3-1-3- مورفولوژی‏های شکست در مد ترکیبی I/II بارگذاری سیکلی………. 35

2-8-3-2- واماندگی داخل لایه ‏ای……………………………………. 37

2-9- فاکتورهای تأثیرگذار بر روی رفتار خستگی کامپوزیت‏های زمینه پلیمری………38

2-9-1- نوع الیاف……………………………………. 38

2-9-2- زمینه و محیط……………………………………. 40

2-9-3- شرایط بارگذاری……………………………………. 41

2-10- آزمون‏های مکانیکی متداول بر روی کامپوزیت‏های زمینه پلیمری………….. 43

2-10-1- آزمون کشش…………………………………….. 43

2-10-2- آزمون فشار………………………………….. 44

2-10-3- آزمون خستگی……………………………………. 45

2-11- آنالیز حرارتی کامپوزیت‏های زمینه پلیمری…………………………….. 46

2-12- مروری بر تحقیقات انجام شده………………………………….. 48

2-12-1- تحقیقات انجام شده در رابطه با روش‏های مختلف ساخت کامپوزیت‏های زمینه پلیمری………..48

2-12-2- تحقیقات انجام شده در رابطه با آزمون کشش کامپوزیت‏های زمینه پلیمری…………….49

2-12-3- تحقیقات انجام شده در رابطه با خواص خستگی کامپوزیت‏های زمینه پلیمری…………….50

2-12-4- تحقیقات انجام شده در رابطه با مکانیزم واماندگی خستگی………………51

2-12-5- تحقیقات انجام شده در رابطه با آنالیز حرارتی کامپوزیت‏های زمینه پلیمری……………56

فصل 3- مواد آزمایش و روش تحقیق……………………………………. 58

3-1- مشخصات رزین……………………………………. 59

3-2- روش‏های ساخت نمونه…………………………………… 60

3-2-1- روش لایه‏ گذاری دستی……………………………………. 60

3-2-2- روش تزریق رزین به کمک خلأ (VIP)………………………………….. 61

3-3- آماده‌سازی نمونه…………………………………… 63

3-4- انجام آزمون کشش بر روی نمونه ‏های آماده شده………………….. 64

3-5- انجام آزمون خستگی……………………………………. 65

3-5-1- مشخصات نمونه ‏های تست خستگی……………………………………. 66

3-5-2- آزمون خستگی کشش–کشش…………………………………….. 67

3-6- آنالیز وزن سنجی حرارتی (TGA)………………………………….. 69

3-7- تصویربرداری SEM…………………………………….

فصل 4- نتایج و بحث…………………………………… 71

4-1- نتایج آنالیز وزن‏سنجی حرارتی (TGA)………………………………….. 72

4-2- نتایج تست کشش…………………………………….. 76

4-3- نتایج آزمون خستگی……………………………………. 78

4-3-1- ترسیم منحنی S-N با بهره گرفتن از روابط مختلف خستگی…………… 84

4-3-2- مقایسه منحنی‏های S-N کامپوزیت‏های تولید شده به وسیله فرایندهای دستی و VIP…………

4-3-3- مقایسه منحنی‏های S-N به دست آمده در فرایندهای ساخت VIP و دستی با استاندارد GL………….

4-4- نتایج تصویربرداری SEM…………………………………….

4-4-1- نتایج تصویربرداری SEM از سطوح شکست خستگی نمونه‏ های دستی………..97

4-4-2- نتایج تصویربرداری SEM از سطوح شکست خستگی نمونه ‏های VIP………..

4-4-3- مقایسه مکانیزم‏های واماندگی خستگی برای نمونه ‏های دستی و VIP………….

فصل 5- نتیجه‏ گیری و پیشنهادات……………………………………. 110

5-1- نتیجه‏ گیری……………………………………. 111

5-2- پیشنهادات……………………………………. 113

6- مراجع…………………………………… 114

چکیده:

در این پژوهش، کامپوزیت­های زمینه پلیمری (رزین اپوکسی) تقویت شده توسط پارچه بافته شده از الیاف شیشه­ای E-glass به دو روش لایه­گذاری دستی و تزریق رزین به کمک خلأ (VIP) ساخته شدند و رفتار خستگی آن­ها مورد بررسی قرار گرفت. با توجه به نتایج حاصل از آزمون کشش، استحکام کششی در نمونه­های تولید شده به روشVIP (MPa 362) بیشتر از نمونه‏های تولید شده به روش لایه­گذاری دستی (MPa 242) بود. بر اساس نتایج آزمون خستگی کشش-کشش (1/0=R)، عمر خستگی بیشتری برای نمونه­های VIP مشاهده شد در دامنه تنش MPa67، نمونه­های VIP، 106×11/2 سیکل را تا زمان واماندگی تحمل کردند در حالی که، در دامنه تنش پایین­تر MPa61، نمونه­های دستی 105×29/1 سیکل را تحمل نمودند. تعداد سیکل واماندگی نمونه­های VIP در تنش خستگی MPa200، برابر با 103×0/5 به دست آمد. اما، همین پارامتر برای نمونه‏های دستی در تنش خستگی پایین­تر MPa150 برابر با 103×2/1 حاصل شد. با توجه به نمودار S-N رسم شده، در تعداد سیکل ثابت 100،000 دامنه تنش قابل تحمل نمونه دستی حدود MPa60 تخمین زده شد؛ در صورتی دامنه تنش متناظر برای نمونه VIP حدود MPa90 بود. با توجه به تصاویر SEM سطح شکست نمونه­ها، مکانیزم­های واماندگی غالب برای نمونه­های ساخته شده به روش لایه‏گذاری دستی تحت بار خستگی به صورت جدایش لایه­ها و بیرون آمدن الیاف مشاهده شد. در حالی که، مکانیزم­های واماندگی برای نمونه­های ساخته شده به روش VIP، جدایش الیاف از زمینه و ترک خوردن زمینه بود. نتایج حاصل از آنالیز وزن­سنجی حرارتی (TGA)، تنها نشان دهنده وجود اتصال مکانیکی بین الیاف و زمینه بود، که جدایش الیاف از زمینه و بیرون آمدن الیاف مشاهده شده در تصاویر SEM را توجیه می­کرد. بر اساس نتایج حاصل از این آنالیز، درصد وزنی الیاف برابر با 69% و 52% برای نمونه­های ساخته شده به روش VIP و لایه­گذاری دستی محاسبه شد.

فصل اول: مقدمه

1- مقدمه

1-1- کلیات

افزایش تأثیرات منفی انرژی فسیلی بر روی محیط زیست، مانند گرم شدن جهانی و بحران در

 

برای دانلود متن کامل پایان نامه ها اینجا کلیک کنید

دسترس بودن انرژی، بسیاری از کشورها را بر آن داشته است که از انرژی­های جایگزین دیگری مانند انرژی خورشید، باد و خورشید-هیدروژن استفاده کنند. این انرژی­ها تجدیدپذیر و دوست­دار محیط زیست هستند، به گونه‏ای که پاسخ­گوی تقاضای روزافزون بشر برای انرژی می­باشند. انرژی باد، سریع­ترین منبع انرژی رو به رشد در جهان، یک منبع انرژی تجدیدپذیر و تمیز است. اکنون کشورهای بسیاری، به خصوص در اروپا، ایالات متحده آمریکا، چین و ملل دیگر، توجه خاصی به این منبع انرژی دارند ]1[.

بر اساس اطلاعات سازمان انرژی­های نو ایران (سانا)،استفاده از انرژی باد در طول سالیان اخیر بیشترین رشد را در مقایسه با سایر انرژی­های نو تجربه کرده است و توربین­های بادی هر روز بهینه­تر و با ظرفیت توان بیشتر به بازار عرضه می­شوند. تاریخچه انرژی بادی یک سیر تکاملی را به استفاده از قطعات سبک و ساده برای به حرکت درآوردن پره­ها بوسیله نیروی بازدارنده[1] طی کرده است. آسیاب­های بادی که در قدیم مورد استفاده قرار می­گرفتند نخستین نوع توربین­های بادی بودند که به عقیده تمامی کارشناسان نخستین بار توسط ایرانیان به کار گرفته شد ]2[.

با وجود این پیشینه ارزشمند تاریخی و علی‌رغم پتانسیل­های موجود و مناطق مستعد بادخیز کشور، توسعه صنعت باد در ایران با پیشرفت مناسبی روبرو نشده است. در حال حاضر در وزارت نیرو، نصب MW5000 نیروگاه تجدیدپذیر در قانون برنامه پنجم توسعه هدف­گذاری شده است که از این میزان MW4500 آن برای توسعه باد در نظر گرفته شده است و می‌توان گفت در پنج سال آینده قریب به MW4000 بازار برای توسعه بخش خصوصی وجود خواهد داشت. هم اکنون سایت­های بادی بینالود و منجیل، بزرگ­ترین سایت­های بادی کشور محسوب شده که تقریبا MW100 از برق مورد نیاز کشور را تامین می­ کنند، این مقدار سهم ناچیزی از مقدار کل انرژی برق تولید شده در کشور را تشکیل می­دهد ]2[.

اما بر خلاف رویه موجود در داخل کشور، سایر کشورهای جهان به طور گسترده در راستای توسعه صنعت بادی خود گام برداشته اند و میزان انرژی الکتریکی تولید شده بوسیله باد روز به روز سهم بیشتری از کل انرژی تولیدی جهان را تشکیل می­دهد. به عنوان نمونه ­ای از سیاست­گذاری­های کلان در این زمینه می­توان به تصمیم اتحادیه اروپا برای تولید 20% از انرژی خود از منابع پاک تا سال 2020 اشاره کرد. شکل 1-1 ظرفیت کلی انرژی بادی تولیدی در جهان را تا سال 2011 را نشان می­دهد ]2[.

جدول1-1 نیز میزان ظرفیت نیروگاه­های بادی نصب شده در کشورهای شاخص استفاده کننده از انرژی باد را نشان می­دهد.

اغلب پره­های توربین، چه کوچک و چه بزرگ، قسمت­های اصلی مشابهی دارند: پره­ها، شفت­ها، چرخ­دنده­ها، ژنراتور، و یک کابل (برخی از توربین­ها ممکن است دارای جعبه دنده نباشند). کلیه این قسمت­ها با هم کار می­ کنند تا انرژی باد را به الکتریسیته تبدیل نمایند. در این بین، پره یکی از مهمترین اجزای توربین­های بادی است که وظیفه آن تولید نیروی لازم برای چرخاندن محور اصلی توربین است. طراحی پره توربین­های بادی یکی از مهم­ترین و اصلی­ترین بخش­های طراحی توربین به شمار می­شود که با توجه به شرایط بسیار متغیر بهره ­برداری و اعمال بارهای شدید بر آن، انتخاب جنس و طراحی سازه­ای آن از اهمیت زیادی برخوردار است. مواد مورد استفاده در ساخت پره­ها به طور قابل ملاحظه­ای بر روی کارایی و خواص آن­ها، مانند وزن پره، مکانیزم آسیب، و عمر خستگی اثرگذار است. پره­های توربین­های بادی از مواد ناهمسان­گرد ساخته می‏شوند که معمولاً از کامپوزیت­های زمینه پلیمری، در ترکیبی از یک تک پوسته و کامپوزیت ساندویچی تهیه شده‏اند. طراحی­های امروزی عمدتاً بر اساس کامپوزیت­های تقویت شده با الیاف شیشه[1] (GFRP) صورت می‏گیرد. به طور کلی مواد مورد استفاده در ساخت پره­های توربین بادی بایستی تحمل بارگذاری­های خستگی شدید را در شرایط کاری داشته باشند ]1[.

ساختار کامپوزیتی به عنوان یک نوع خاص از کامپوزیت­های لایه­ای  تلقی می­شود و مقبولیت گسترده­ای به عنوان یک ساختار عالی برای دست­یابی به اجزایی با وزن کم و ساختارهایی با سفتی خمشی[2] بسیار بالا، استحکام زیاد، و مقاومت کمانشی بسیار زیاد به دست آورده است. این مواد توسط روش قالب­گیری انتقال رزین[3] (RTM)، RTM به کمک خلاء[4]، لایه­گذاری دستی و تزریق رزین به کمک خلاء[5] (VIP) ساخته می‏شوند. تفاوت روش VIP با روش RTM در آن است که در این روش تنها یک سمت از قالب جامد است در صورتی که در روش RTM هر دو سمت جامد هستند. علاوه بر آن، از یک خلأ اعمالی به منظور نیرو محرکه برای انتقال رزین به تقویت­کننده استفاده می­شود ]3[.

در تولید پره‌های توربین بادی کوچک و متوسط معمولاً از روش لایه‌گذاری دستی و در پره بزرگ و حتی متوسط با توجه به اهمیت وزن و استحکام سازه از روش تزریق رزین به کمک خلأ (VIP) استفاده می‌شود. یکی از موضوعاتی که باید در طراحی محصولات مهندسی مورد استفاده قرار گیرد آن است که عمر محصول تولیدی چقدر خواهد بود. عمر در این محصولات به صورت مدت زمانی تعریف می­شود که محصول قادر است تحت بارهای سرویس عمل­کرد مورد انتظار را داشته باشد. عمر یک قطعه می ­تواند به کوتاهی یک بار استفاده تعیین شود، از سوی دیگر در برخی محصولات باید قابلیت تحمل میلیون­ها سیکل در نظر گرفته شود که توربین­های بادی نیز از این دسته­اند. محصولاتی با چنین عمرهای بالایی مستعد برای شکست خستگی هستند.

گسترش ابزارهای مورد نیاز جهت تعیین عمر خستگی مواد ساخته شده از کامپوزیت با کندی روبروست، دلیل این امر را باید در ماهیت لایه­ای و غیریکنواخت این مواد جست و جو کرد، به طور مثال اگر در فلزات تنها عامل خرابی را طول ترک تشکیل می­دهد، مواد کامپوزیتی حالت‌های مختلف شکست را از خود بروز می­ دهند که از آن جمله می­توان به ترک خوردن زمینه[6]، جدایش الیاف از زمینه[7]، کمانش الیاف، جدایش لایه­ها[8]، شکست تک­لایه و شکست الیاف اشاره کرد. معمولاً در یک شکست ناشی از خستگی در مواد کامپوزیتی ترکیبی از مکانیزم­های فوق فعال است و این مسأله به خودی خود تحلیل­های خستگی را با چالش­های فراوانی روبرو می­ کند. حال اولین قدم در تحلیل­های خستگی تعیین منحنی S-N به صورت آزمایشگاهی و در قدم بعد شناسایی مکانیزم­های مختلف واماندگی خستگی می­باشد. با مشخص شدن این داده‌ها، مهندسین می‌توانند به تخمین‏های اولیه خستگی جهت ساخت محصول برای صنعت و خریداران کمک نمایند.

2-1- اجرای پروژه

در گام اول نیاز صنعت در ساخت پره‌های توربین بادی مورد بررسی قرار گرفت، از آنجا که آزمون‎های دینامیک با توجه به نوع سازه حائز اهمیت هستند طی جلسات برگزار شده در پژوهشکده هوا خورشید دانشگاه فردوسی مشهد موضوع بررسی رفتار خستگی کامپوزیت­های زمینه پلیمری (اپوکسی) تقویت شده با پارچه بافته شده با الیاف شیشه­ای E-glass، که در ساخت پره­های توربین بادی به کار می­روند، مطرح شد. در ادامه با مطالعه استانداردها و کارهای صورت گرفته بر روی خستگی کامپوزیت‌های زمینه پلیمری امکان‌پذیر بودن و قابلیت اجرای پروژه در دستور کار قرار گرفت. برای این کار لایه­گذاری نمونه­ها را به صورت ترکیبی از الیاف با جهات گوناگون در نظر گرفته شد که به نوعی شرایط به شرایط عمل­کرد واقعی پره­های توربین نزدیک‏تر شده باشد. در این مرحله نمونه سازی با بهره گرفتن از روش دستی و نیز تزریق به کمک خلأ در کارگاه کامپوزیت پژوهشکده هوا خورشید دانشگاه فردوسی مشهد، انجام گرفت. بعد از برش دادن ورق­های کامپوزیتی، به منظور ساخت نمونه، مقاطع برش خورده ماشین­کاری شده و در نهایت نمونه نهایی به دست آمد. پیش از شروع آزمون خستگی با تعریف آزمون‌های مورد نیاز و انجام آن‌ها از کالیبره بودن دستگاه مورد استفاده اطمینان حاصل شد. در مرحله بعد با انجام تست کشش و شروع تست خستگی مشکلات اولیه انجام تست از جمله شکستن نمونه در فک‌های دستگاه و مشکلات ساخت نمونه‌ مورد بازبینی قرار گرفت و طی جلساتی راهکارهای حل مشکلات مطرح شد.

در گام بعدی با توجه به تعداد نمونه‌های لازم جهت آزمون خستگی و کشش ابعاد صفحه اصلی مشخص و نمونه نهایی تولید شد. با انجام آزمون کشش بارهای اعمالی برای

موضوعات: بدون موضوع
[شنبه 1398-07-13] [ 11:35:00 ق.ظ ]