پایان نامه ارشد کارشناسی ارشد رشته مهندسی برق گرایش قدرت:کنترل خودکار تولید سیستم قدرت در حضور منابع انرژی تجدیدپذیر- قسمت 5 | ... | |
بادی سرعت متغیّر دو سو تغذیه DFIG را نشان میدهد. سیستم قدرت دو ناحیه ای حرارتی در اینجا مشابه سیستم قدرت ارائه شده در [2] میباشد. هر ناحیه متشکّل از یک واحد حرارتی با ظرفیت نامی 500 مگاوات میباشد. اطلاعات سیستم قدرت در جدول-1 در ضمیمه آمده است. پاسخ دینامیکی سیستم قدرت به انحراف باری معادل با 0.1 توان مبنای ناحیه 1 در حضور تولید بادی DFIG با ضریب نفوذهای مختلف، در نرم افزار Matlab/Simulink r2013a مورد بررسی قرار میگیرد. در بخش بعدی تغییرات بوجود آمده در لختی سیستم به سبب تغییر در ضریب نفوذ تولید بادی مورد بررسی قرار میگیرد. 3-2-5- تغییر در تنظیم دروپ واحدهای تولید بادی توسط DFIG بدون قابلیّت پشتیبانی فرکانس (3-9) % ضریب نفوذ تولید بادی به معنای % کاهش در توان موجود در تولید متداول است. به این معنی که % از لختی شبکه کاسته شده و هیچگونه کنترل فرکانسی نیز در پی این جایگزینی تمهید نشده است. در نتیجه لختی سیستم به صورت زیر تغییر میکند: (3-10) 3-2-7- تغییر در تنظیم فرکانس و ثابت لختی سیستم در حضور سیستم پشتیبانی فرکانس ثابت لختی اصلاح شده سیستم در حضور تولید بادی DFIG با ضریب نفوذ و با پشتیبانی فرکانس را میتوان به صورت زیر عنوان کرد: (3-11) (3-12) (3-13) سهم لختی توربین بادی ، بر اساس مدل تاخیری توربین- گاورنر که در [35] [57] بیان شده، بدست آمده است. ثابت لختی مجدّداً میتواند برای ضریب نفوذ مشخّصی از تولید بادی و همچنین سطح مشخّصی از پشتیبانی موقّت توان اکتیو محاسبه شده و برای اصلاح ثابت لختی معادل سیستم، در معادله 3-10 وارد شود. مجموع تاخیر زمانی که در معادله 3-12 عنوان شد، بر اساس مدلی است که در [57] بیان شده است. زمانی است که در آن بیشترین تغییر فرکانس پس از بروز اغتشاشی در بار پدید میآید. این تاخیر متشکّل است از ثابت زمانی گاورنر ، ثابت زمانی ناشی ازحرکت دریچه شیر بخار و همچنین تأخیر ناشی از پاسخ توربین . (3-14) تأخیر زمانی مرتبط با گاورنر: در حضور قابلیت پشتیبانی فرکانس 3-2-8- کنترلر پیشنهادی برای پشتیبانی توان اکتیو از DFIG برای کنترل فرکانس معمولاً، کنترلرهای توربین بادی سرعت متغیّر سعی میکنند توربینها را در سرعت بهینهای مورد بهره برداری قرار دهند تا بتوانند بیشینه توان را متناسب با آن استحصال کنند. کنترلر بر اساس سرعت و توان الکتریکی اندازه گیری شده، نقطه مرجع گشتاور را تعیین میکند. همانطور که شکل (3-1) نشان می دهد نقطه مرجع گشتاور ، ورودی مبدل الکترونیک قدرت است که با کنترل کلیدزنی و تنظیم جریان خروجی مبدل، توان تحویلی به شبکه را تأمین میکند. برای بکار بردن انرژی و لختی توربینهای بادی جهت تزریق توان اکتیو به شبکه و کمک به کنترل فرکانس، سیگنال کنترلی جدیدی مطابق با آنچه در شکل 3-9 در داخل خط چین نشان داده شده است، پیشنهاد میشود. این سیگنال کنترلی در زمان تشخیص انحراف فرکانس در شبکه، کنترل اولیّه فرکانس توربینهای بادی DFIG را فعّال کرده و تغییر توان اکتیوی متناسب با تغییرات فرکانس سیستم و همچنین نرخ تغییرات فرکانس شبکه برای شبکه قدرت فراهم میآورد. اثر لختی توربینهای بادی با ثابت کنترلر و پشتیبانی کنترل اولیّه فرکانس نسبت مستقیم با دارد. این افزایش توان علاوه بر مقدار توان تحویلی توربینهای بادی قبل از بروز اغتشاش بار بوده و با اعمال سیگنال کنترلی جدید انرژی جنبشی موجود در جرم چرخان توربینها به این مقدار اضافه شده و مقدار جدیدی را اخذ می کند. لازم به ذکر است بخاطر جذب انرژی جنبشی موجود در توربینهای چرخان بادی جهت تزریق آن به شبکه، سرعت چرخش توربینها از سرعت بهینه شان کاهش مییابد. نرخ کاهش سرعت توربین بادی به تغییرات فرکانس و نرخ تغییرات آن وابسته است. ذکر این نکته ضروری است، توان اکتیو اضافی DFIG، تنها در دوره ای گذرا در کنترل اولیّه فرکانس شرکت دارد. وقتی سیستم به حالت ماندگار جدیدی دست پیدا کرد که با حالت بهینه آن اختلاف دارد، نرخ تغییرات فرکانس توسط ثابت میراکنندگی بار و تنظیم دروپ سیستم تاثیر می پذیرد. کنترلر انتگرالگیر شکل 3- 9 کنترلر پیشنهادی برای پشتیبانی فرکانس حلقه ثانویه کنترل (AGC) سعی در از بین بردن خطای حالت ماندگار شبکه می کند و فرکانس شبکه و توان انتقالی خطوط را به مقدار نامی و از پیش مقرّر شده آن باز میگرداند. در نتیجه، سیگنال کنترلی اضافی ای که برای مبدل الکترونیک قدرت در نظر گرفته شده بود و به عنوان تابعی از تغییرات فرکانس و نرخ تغییرات فرکانس عمل میکرد(شکل 3-9 )، غیرفعّال شده و عملکرد نرمال DFIG پیگیری میگردد تا مجدّداً سرعت چرخش توربینهای بادی را به میزان بهینه آن باز گرداند و زمینه مشارکتهای بعدی را فراهم کند. 3-3- مشارکت واحد های تولید توان خورشیدی در کنترل فرکانس شبکه در این بخش ابتدا به چگونگی جذب انرژی خورشیدی توسط پانلهای خورشیدی و معادلات
مربوطه بیان میشود. در ادامه استراتژی کنترلی مناسبی برای شرکت دادن تولید خورشیدی در کنترل اولیّه فرکانس بیان میشود. تاثیرات استفاده از یک چنین سیستم کنترلی بر روی سیستم قدرت مدل شده و ساختار کنترل فرکانس بار شبکه در حضور این کنترلر به روز میشود. 3-3-1- مشخّصات پانلهای خورشیدی و مدلسازی آنها با صرفنظر از مقاومتهای سری داخلی ، میتوان معادلات متداول یک ماژول خورشیدی را به صورت بیان شده در رابطه 3-16 ذکر کرد: (3-16) که در آن و به ترتیب جریان و ولتاژ خروجی ماژول خروجی می باشند. جریان تولیدی تحت تابش خورشیدی، جریان اشباع معکوس، شارژ الکتریکی الکترون، ثابت بولتزمن، فاکتور ایدهآلی دیود، دمای ماژول خورشیدی (به کلوین)، تعداد سلولهای خورشیدی موازی و جریان ذاتی شاخه مقاومت موازی ماژول خورشیدی است. همانطور که در معادله 3-17 فرمول بندی شده، جریان اشباع ماژول خورشیدی با نوسانات دما تغییر میکند: (3-17) (3-19) شکل 3-11 ساختار کلی ژنراتور خورشیدی متصل به شبکه را نشان می دهد. شکل 3- 11 ژنراتور خورشیدی متصل به شبکه با توجه مدلسازی که بیان شد، در یک تابش مشخصی از خورشید و یک دمای معین، پانلهای خورشیدی با توجه به ولتاژ نقطه کار خود توان جریان مشخصی را تولید می کند. این نقطه کار با توجه به ولتاژ ماژول خورشیدی حاصل می شود. این ولتاژ از طریق رفرنس ولتاژ واسط الکترونیک قدرت به این ادوات اعمال می شود. برای یک ماژول خورشیدی معادلات بیان شده در 3-16 الی 3-19، در نرم افزار Matlab/Simulink r2013a مدل شده و به ازاء تغییرات رفرنس ولتاژ ماژولهای خورشیدی، منحنیهای و به ازاء تابشهای مختلف خورشید برای دمای عادی محیط معادل با 300 درجه کلوین (27 درجه سانتیگراد)، در شکلهای 3-12و 3-13 رسم شده اند. از این نمودارهای اینطور استنباط میشود که آرایههای خورشیدی غیر خطیاند و نقطه کار آنها به شدّت با تغییر تابش خورشید و همچنین ولتاژ رفرنس تغییر میکند. شکل 3- 12 منحنی V_I ماژول خورشیدی
شکل 3- 13 منحنی V_P ماژول خورشیدی 3-3-2- استراتژی کنترلی پیشنهادی برای مزرعه خورشیدی (3-20) 3-3-3- تغییر در تنظیم دروپ واحدهای تولیدی در حضور تولید خورشیدی با ضریب نفوذ (3-21) (3-22) 3-3-5- مشارکت واحد تولید خورشیدی در تنظیم فرکانس شبکه
[یکشنبه 1398-07-14] [ 06:09:00 ق.ظ ]
لینک ثابت
|